Chapter 2 — Advanced SQL

Procedural SQL Programming

Mr. Laidi FOUGHALI
|.foughali@univ-skikda.dz

(Course materials = al-moualime.com)

/\ University of Skikda — Department of Computer Science

%s).-._.&pi:”,\ 1% Year Master RSD/AI
_/ Advanced Databases (ADB)

Octobre 12, 2025
Version 1.0 (Initial) — 2025-10-25 a 07:55:41

© 2025 Mr. Laidi FOUGHALI — Creative Commons License — BY-NC-SA 4.0 International

mailto:l.foughali@univ-skikda.dz
https://al-moualime.com/
https://creativecommons.org/licenses/by-nc-sa/4.0/

ogrammin Cross-DBMS Comparisor

© Objective

© Origins

© Philosophy

e PostgreSQL

© Programming

© Cross-DBMS Comparison

@ Conclusion

) 2025 M. Laidi FOUGHALI BDA — Chapter 2: Advanced SQL Pages : 21

Title Page ’lan Objective

Objective

General Objective

@ The standard SQL language has, since SQL-86 (ISO/IEC 9075 :1986),
been a declarative language : it describes the expected result without
imposing how to obtain it.

@ Over time, applications required sequential processing, conditional tests,
and repeated actions directly on the server side.

@ The SQL/PSM — Persistent Stored Modules standard (ISO/IEC
9075-4 :1996) introduced procedural SQL programming.

@ This evolution turns the DBMS into a full application engine, capable of
executing internal logical programs ensuring transactional coherence,
security, and performance.

@ It improves portability and reduces client—server round trips.
[ISO/IEC 9075-4 :2016 — SQL/PSM Silberschatz et al., 2019]

2025 M. Laidi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 12, 2025

Title Page Plan Obje e Origins Philosoph: 0! eSQ Cross-DBMS Comparisor

Origins

Origins of Procedural SQL

@ The early SQL-86 and SQL-92 standards defined a purely declarative
language : one specifies the result, not the execution method.

@ Evolving needs led to introducing sequential processing, conditions, and
loops on the server side.
@ The SQL3 project (1992) formalized this extension with SQL/PSM —
Persistent Stored Modules (ISO/IEC 9075-4 :1996), which adds :
e BEGIN ... END blocks,
o local variables,
e control flow (IF, WHILE, LOOP),
o exception handling (HANDLER).

@ This standard inspired several procedural languages, notably :
e PL/pgSQL (Procedural Language / PostgreSQL SQL —
PostgreSQL, 1996),
e SQL/PSM for MySQL (partial compliance with the standard,
MySQL, 2005).

@ Goal : make SQL capable of executing internal logical programs,
combining declarative power with procedural control.
[ISO/IEC 9075-4 :1996; Elmasri & Navathe (2016); Gardarin (2003)]

2025 M. Laidi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 12, 2025

Philosophy

Philosophy ostgreSQ rogrammin Cross-DBMS Comparisor

Philosophy of Procedural SQL

Principle : bring application logic closer to the data by executing
processing directly within the DBMS.

Effects : fewer network exchanges, reduced latency, better
transactional coherence and security.

The DBMS becomes an integrated application engine : stored
procedures, triggers, and business rules without external dependencies.
Maintained duality :

o Declarative SQL : desired result,

e Procedural SQL : logical sequence to obtain it.
Ultimately, SQL remains expressive, structured, and operational, faithful

to the relational model and adapted to modern needs.
[Silberschatz et al. (2019); ISO/IEC 9075-4 :2016]

2025 M. Laidi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 12, 2025

Title Page Plan Obje e ¢ hilosoph PostgreSQL Cross-DBMS Comparisor

PostgreSQL

PostgreSQL — Course Scope

@ Course scope : all practical examples use PostgreSQL (procedures,
functions, triggers, PL/pgSQL).

@ Theoretical reference : content is based on the SQL standards
(ISO/IEC 9075, including SQL/PSM) ; PostgreSQL-specific extensions
are clearly identified.

@ Why PostgreSQL ?

o Reliable open source, backed by a large community.

o Highly compliant with SQL standards, with well-documented
extensions.

o Industrial-grade system : robust, performant, rich tooling
(replication, JSONB, FDW, etc.).

@ Global adoption :

e Amazon : Aurora and AWS RDS for PostgreSQL.

e Google : Cloud SQL for PostgreSQL.

e Meta (Instagram) : transactional storage based on PostgreSQL.

@ Pedagogical value : a standards-based foundation and a technology

used in production.
[ISO/IEC 9075 ; PostgreSQL Documentation; AWS & Google Cloud]

2025 M. Laidi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 12, 2025

Title Page Philosoph >ostgreSQ Programming Cross-DBMS Comparisor

Block

Logical Structure of a Procedural Block

A procedural block is an executable unit grouping several SQL statements
executed sequentially, with local variables and built-in error handling.
Objective : enable imperative logic directly within the DBMS.

Minimal composition :

@ DECLARE section — declaration of local variables;
@ Main block BEGIN ... END — statements and control flow;
@ Optional EXCEPTION section — error handling.

Block execution runs within a single transaction, ensuring coherence and
atomicity.

[ISO/IEC 9075-4 :2016]

2025 M. Laidi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 12, 2025

DBMS Comy

Philosoph: ot SQ Programming

Syntax

Standard Syntax of a Procedural Block

Procedural block template per the SQL/PSM standard :

[DECLARE
variable_1 type [DEFAULT valuel;

variable_2 type;

]
BEGIN
-- Sequential SQL statements
-- Control structures: IF, WHILE, LOOP, FOR, CASE, etc.

EXCEPTION
-- Error handling (DECLARE CONTINUE/EXIT HANDLER)

END;

Key principles :
@ Blocks can be nested;
@ Variables are local to their block;
@ Unhandled exceptions are propagated to the parent block.

[ISO/IEC 9075-4 :2016 — Persistent Stored Modules]

) 2025 M. Laidi FOUGHALI BDA — Chapter 2: Advanced SQL

Plan Objective Philosoph ostgreSQ Programming Cross-DBMS Compa

Example

[llustrative Procedural Block

Example of a procedural block executed directly on the server :

DO $$

DECLARE
v_total DECIMAL (10,2);

BEGIN
SELECT SUM(amount) INTO v_total FROM Invoices;
RAISE NOTICE 'Total sales: %', v_total;

END $$;

Takeaways :
@ DO executes an anonymous block without creating a persistent object;
@ RAISE NOTICE emits an informational message during execution;
@ $$... $$ (dollar-quoting) delimits the block code.

[PostgreSQL 16 — PL/pgSQL Reference Manual]

) 2025 M. Laidi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 12, 2025

Objective Philosoph Programming Cross-DBMS Comparisor

Variables

Declaring and Using Variables

Variable declaration :

DECLARE v_amount DECIMAL(10,2);
DECLARE v_rate DECIMAL (5,2) DEFAULT 0.15;

Assignment :

v_amount := 1000;
v_amount := v_amount * (1 + v_rate);
Notes :

@ The := operator is used for local assignment;

@ SELECT ... INTO assigns a query result to a variable.

[PostgreSQL 16 — PL/pgSQL Variables]

BDA — Chapter 2: Advanced SQL

Origir Philosoph o R Programming Cross-DBMS Comparisor

Procedures

Stored Procedure : Principle

@ A stored procedure is a named block registered in the DBMS catalog.

@ It executes multiple statements in a single call, improving coherence and
performance.

@ It accepts IN, OUT, and INOUT parameters.

@ Unlike a function, it does not return a direct value; results are passed via
parameters or data effects.

[ISO/IEC 9075-4 :2016; PostgreSQL 16]

) 2025 M. Laidi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 12, 2025

Philosoph o Programming Cross-DBMS Comparisor

Procedure

Creating a Stored Procedure

CREATE PROCEDURE P_AdjustBalance(
IN p_id INT,
IN p_amount DECIMAL (10,2),
INOUT p_balance DECIMAL (10,2)
)
LANGUAGE plpgsql AS $$
BEGIN
UPDATE Accounts
SET balance = balance + p_amount
WHERE id = p_id;

SELECT balance INTO p_balance
FROM Accounts WHERE id = p_id;
END $$;

Notes :
@ IN, OUT, and INOUT parameters are supported since version 11;
@ The CALL statement executes the procedure on the server;
@ Each BEGIN...END block runs within a local transaction context.

[PostgreSQL 16 — PL/pgSQL Reference Manual]

BDA — Chapter 2: Advanced SQL

Philosoph PostgreSQ Programming Cross-DBMS Comparisor

Call

Executing a Stored Procedure

Execute a procedure with the CALL command :

‘CALL P_AdjustBalance (101, 200.00, p_balance);

Principles :
@ The call executes the stored block on the server;
@ QUT or INOUT parameters retrieve results;
@ A procedure is not used with SELECT, unlike functions.

[PostgreSQL 16 — CALL Statement]

2025 M. Laidi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 12, 2025

Philosoph o R Programming Cross-DBMS Comparisor

Function

Creating an SQL Function

A function is a named procedural block that returns a single value and can be
invoked in a query.

CREATE OR REPLACE FUNCTION F_VAT(amount DECIMAL (10,2))
RETURNS DECIMAL (10,2) AS $$
BEGIN
RETURN amount * 0.19;
END;
$$ LANGUAGE plpgsql;

-- Invocation
SELECT F_VAT (1000) ;

Characteristics :
@ Declared via CREATE FUNCTION;
@ Return value provided by the RETURN statement ;
@ Functions cannot execute COMMIT nor ROLLBACK.

[PostgreSQL 16 — CREATE FUNCTION]

) 2025 M. Laidi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 12, 2025

Programming

Control

Control Structures

Control structures enable conditional or repetitive execution :

IF condition THEN
statements;

ELSIF other_condition THEN
other_statements;

ELSE
default_statements;

END IF;

WHILE condition LOOP
statement;
END LOOP;

Other forms : FOR, LOOP, EXIT WHEN, CASE.
[PostgreSQL 16 — Control Structures]

BDA — Chapter 2: Advanced SQL

Programming Cross-DBMS Comparisor

Exceptions

Exception Handling

Runtime errors are handled in an EXCEPTION block :

BEGIN
IF p_amount <= O THEN
RAISE EXCEPTION 'Invalid amount: %', p_amount;
END IF;
EXCEPTION
WHEN others THEN
RAISE NOTICE 'Captured error: %', SQLERRM;
END;

Severity levels : NOTICE, WARNING, EXCEPTION.
[PostgreSQL 16 — Exception Handling]

. Laidi FOUGHALI BDA — Chapter 2: Advanced SQL

Philosoph o Programming Cross-DBMS Comparisor

Cursors

Cursors and Sequential Processing

Cursors allow row-by-row processing of a result set :

DO $$
DECLARE
c_inv CURSOR FOR SELECT id, amount FROM Invoices;
v_id INT; v_amount DECIMAL;
BEGIN
OPEN c_inv;
LOOP
FETCH c_inv INTO v_id, v_amount;
EXIT WHEN NOT FOUND;
RAISE NOTICE 'Invoice %: %', v_id, v_amount;
END LOOP;
CLOSE c_inv;
END $%;

[PostgreSQL 16 — Cursors in PL/pgSQL]

. Laidi FOUGHALI BDA — Chapter 2: Advanced SQL

Programming Cross-DBMS Comparisor

Triggers

Triggers

A trigger automatically executes a function when an event (insert, update,
delete) occurs on a table.

CREATE OR REPLACE FUNCTION F_LogSale ()
RETURNS trigger AS $$
BEGIN
INSERT INTO SalesLog VALUES (NEW.id, now());
RETURN NEW;
END $$ LANGUAGE plpgsql;

CREATE TRIGGER T_LogSale
AFTER INSERT ON Invoices
FOR EACH ROW EXECUTE FUNCTION F_LogSale();

[PostgreSQL 16 — Triggers and Trigger Functions]

BDA — Chapter 2: Advanced SQL

Philosoph o Programming Cross-DBMS Comparisor Conclusion

Transactions

Transaction Management

A transaction groups several statements executed atomically :

START TRANSACTION;
UPDATE Accounts SET balance = balance - 500 WHERE id
UPDATE Accounts SET balance = balance + 500 WHERE id

COMMIT;

[
N -

-- Rollback
ROLLBACK;

Procedural blocks run in a single transactional context : on error, a global

ROLLBACK is triggered automatically.
[PostgreSQL 16 — Transactions and Error Handling]

BDA — Chapter 2: Advanced SQL

Comparison

Cross-DBMS Comparison

Cross-DBMS Comparison

DBMS Language | Specifics
SQL Standard | SQL/PSM| ISO 9075-4 syntax; cross-DBMS portability.
Compliant with SQL/PSM ; extensions
PostgreSQL | PL/peSQLI prierm, Do, RATSE).
Oracle PL/SQL Packages, fine-grained exception handling, high
performance.
SQL Server T-SQL Close to PSM ; Microsoft proprietary.
MySQL SQL/PSM| Partial implementation ; limited EXCEPTION.

2025 M. Laidi FOUGHALI

[ISO/IEC 9075-4 :2016; Oracle, PostgreSQL, MySQL, SQL Server Docs]

BDA — Chapter 2: Advanced SQL Octobre 12, 2025

Title Page ogrammin Cross-DBMS Comparisor Conclusion
Conclusion

Conclusion

@ SQL/PSM extends SQL into the procedural paradigm, bringing business
logic closer to data;

@ Modern DBMSs (Oracle, PostgreSQL, SQL Server, MySQL) embrace this
philosophy with extensions;

@ Procedural SQL improves performance, security, and maintainability.

[Silberschatz et al., 2019 ; ISO/IEC 9075-4 :2016]

2025 M. Laidi FOUGHALI

BDA — Chapter 2: Advanced SQL

Octobre 12, 2025

	Title Page
	Plan
	Objective
	General Objective

	Origins
	Origins of Procedural SQL

	Philosophy
	Philosophy of Procedural SQL

	PostgreSQL
	PostgreSQL — Course Scope

	Programming
	Block
	Syntax
	Example
	Variables
	Stored Procedure: Principle
	Procedure
	Call
	Function
	Control
	Exceptions
	Cursors
	Triggers
	Transactions

	Cross-DBMS Comparison
	Cross-DBMS Comparison

	Conclusion
	Conclusion

